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Random Cycle Loss and Its Application to Voice
Conversion
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Abstract—Speech disentanglement aims to decompose independent causal factors of speech signals into separate codes. Perfect
disentanglement benefits to a broad range of speech processing tasks. This paper presents a simple but effective disentanglement
approach based on cycle consistency loss and random factor substitution. This leads to a novel random cycle (RC) loss that enforces
analysis-and-resynthesis consistency, a main principle of reductionism. We theoretically demonstrate that the proposed RC loss can
achieve independent codes if well optimized, which in turn leads to superior disentanglement when combined with information
bottleneck (IB). Extensive simulation experiments were conducted to understand the properties of the RC loss, and experimental
results on voice conversion further demonstrate the practical merit of the proposal. Source code and audio samples can be found on
the webpage http://rc.cslt.org.
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1 INTRODUCTION

HUMAN beings can effectively disentangle information
involved in speech signals [1], [2]. This capability

endows the downstream functionalities of human audito-
ry systems, e.g., identifying speaker trait and recognizing
speech content [3], [4]. Researchers have proposed multiple
disentanglement models to simulate this capacity, and have
applied them to various speech processing tasks, such as
speech recognition [5], speech synthesis [6], [7], speaker
recognition [8] and emotion recognition [9].

Among all the tasks, voice conversion (VC) [10] is a
particular case that would benefit substantially if speech
information could be well disentangled. The goal of VC is
to modify speech signals uttered by one speaker to make
them sound like being enunciated by another speaker, while
keeping the content unchanged. Information disentangle-
ment is a natural approach to achieve that goal: if one could
represent content and speaker trait by separate codes, then
VC could be simply achieved by changing the speaker code
while keeping the content code unaltered.

In this section, we will first review the existing research
on speech disentanglement, and then present our motiva-
tion for a novel random cycle (RC) loss, and describe how it
is applied to the VC task.

1.1 Speech disentanglement
According to the identifiability problem [11], it is not pos-
sible to learn disentangled codes without any prior on
models and training schemes. Depending on how the prior
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is involved, we can roughly divide existing speech disentan-
glement approaches into two categories: (1) structure prior
that designs models to represent different factors by codes
at different locations in the model structure; (2) information
regularization that designs appropriate regularization to
control information of different factors flowing to different
codes. Note that we have intentionally distinguished the
concept of factor and code, with the former referring to the
underlying causes of the observed speech signals, and the
latter referring to the representations that are derived by the
disentangling model. The goal of speech disentanglement is
to let the codes represent the factors, ideally with a one-to-
one mapping.

1.1.1 Structure prior

Early research formulated probabilistic models that use
codes with carefully designed priors and conditionals to fit
the underlying factors in speech signals. For instance, the
famous i-vector model [12], that was extensively used in
speaker recognition, disentangles factors of phonetic con-
tent and speaker trait by designing a probabilistic model
that emphasizes the different temporal scopes of the two
factors. A key shortcoming of this approach is that to keep
tractability, the model cannot be complex.

More recent research is based on deep neural nets. For
example, Hsu et al. presented a disentanglement model
based on VAE [5], [13], which decomposes speech signals
into factors of content, speaker and speaking style by de-
signing a probabilistic model in the latent space. Wang et
al. [14] presented a similar architecture, though no explicit
probabilistic models were designed in the latent space.

Overall, the central idea of these models is to design
appropriate structures, either probabilistic or neural, to ac-
count for different properties of different speech factors.
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1.1.2 Information regularization

Information regularization is another way to achieve dis-
entanglement, by designing various regularization methods
that enforce information of a particular factor flowing to a
designed code.

A strong regularization could be achieved through ex-
plicit supervision. For example, [9] designed a cascaded
learning procedure that introduces supervision for content,
speaker and emotion sequentially, hence enforcing codes
of these three factors to be extracted successively. In most
cases, however, full supervision is not available. In this
situation, information bottleneck (IB) [15] accompanied by
reconstruction loss is often used to control the information
flow [16], [17], [18]. The main idea of the IB-based approach
is that if the capacity of all information channels are limited,
the code of each channel will exhibit information selectivity,
in order to recover the input as good as possible with the
limited code bandwidth.

It was found that when the IB is well designed, perfect
disentanglement can be achieved under mild assumption-
s [18]. However in most cases, designing an appropriate
IB is not trivial. To improve disentanglement, some authors
designed explicit regularization on mutual information (MI)
amongst codes, for instance [14], [16].

1.2 Motivation

In this paper, we focus on the IB-based disentanglement
approach, due to its noticeable success in VC and other
applications [18]. Although it was shown that perfect dis-
entanglement can be obtained by this approach, IB design
is often challenging, especially when multiple factors are
involved. Moreover, explicit MI regularization [14], [16]
may not perform as expected. Firstly, most of the regu-
larization methods involve minmax optimization, which is
notoriously unstable. Secondly, most MI regularization is
derived from an upper-bound of MI, rather MI it self. If the
bound is loose, the regularization is not effective. Thirdly,
it was reported that MI regularization does not necessarily
lead to disentangled codes, as argued in [19]. This is also
demonstrated in our simulation study, refer to Section 4.

We present a novel random cycle (RC) loss to improve
speech disentanglement. The main design is a random
factor substitution (RFS) operation and a cycle consistency
loss. Specifically, we hope to minimize ||C ′ − Ĉ ′||2, where
C ′ = RFS(C) represents the code constructed by randomly
substituting some components of the code C of the input
speech, and Ĉ ′ is obtained by re-encoding the speech sig-
nal reconstructed from C ′. The RC loss was inspired by
the analysis-resynthesis principle of reductionism [20], [21],
[22], which states that the world can be decomposed into
atomic factors, and the factors can be recomposed to form
new things (material, concept, functionality, etc.). These new
things are valid and so can be decomposed following the
same rule as applied to the existing things. For speech dis-
entanglement, this means that perfectly disentangled codes
will represent the true factors that generate the speech, and
therefore can be randomly recomposed to form new and
valid speech, which in turn can be decomposed into those
compositional factors, leading to random cycle consistency.

We will show theoretically and empirically that the RC
loss, if perfectly optimized, can induce independent codes,
and when combined with the IB-based approach, enforces
disentangled codes. This interesting property lends the RC
loss as a simple but effective approach to improving speech
disentanglement. Compared to existing MI regularization
methods based on adversarial loss or MI loss, the RC loss
does not require any extra regressor/classifer, and does not
play any minmax game, hence simpler in implementation
and more stable in model training.

We will apply the RC loss to improve voice conver-
sion, and test it with two VC models: AutoVC [18] and
SpeechFlow [23]. These two models are representatives of
the IB-based approach. They are based on auto-encoders
(AEs), and disentangle speech into separate factors through
IB design. While AutoVC aims to disentangle speech into
content and speaker trait, SpeechFlow tries to disentan-
gle speech into more factors: content, timbre, rhythm and
pitch. For clarity in description, we will denote AutoVC
and SpeechFlow trained with RC loss by CycleVC and
CycleFlow respectively.

1.3 Paper structure
In summary, our contributions are three-fold: (1) Propose
the RC loss and analyze its properties theoretically; (2)
Present a simulation study to demonstrate the behavior
of the RC loss; (3) Apply the RC loss to the VC task, to
demonstrate its practical usage.

We first summarize the related work in Section 2, and
propose the RC loss in Section 3. Section 4 presents an
extensive simulation study, and Section 5 and Section 6
present the empirical results on the VC task. Finally Sec-
tion 7 concludes the paper and presents some future re-
search directions. Note that a preliminary version (see sup-
plementary materials) has been published in the Odyssey
2022 workshop, and the current paper involves substantial
extension in both theory and experiments.

2 RELATED WORKS

2.1 Information disentanglement
Decomposing patterns/signals into compositional elements
has a long history, represented by multiple classical algo-
rithms including the famous principle component analysis
(PCA) [24] and independent component analysis (ICA) [25].
In essence, these models target for factorization, i.e., seek-
ing for statistically independent components zi to recover
pattern x by p(x) =

∏
p(zi). Bengio argued that a more

useful decomposition is disentanglement [26], which seeks for
codes that correspond to the underlying causal factors. He
argued that disentanglement is the essential way to achieve
robustness and generalization in machine learning. Recent-
ly, Higgins presented a formal definition for disentangle-
ment [27]. They drew connection between disentanglement
and symmetric transformation.

Many researchers explored unsupervised learning mod-
els to disentangle information factors. The famous models
include Info-GAN [28], β-VAE [29], FactorVAE [30], β-
TCVAE [31]. A common theme among these models is to
make the codes constrained in capacity but still being rep-
resentative and ideally being mutually independent; hence
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more possibly representing the main factors. However, there
is no guarantee that the resultant codes really correspond
to the true generating factors. This problem is theoretically
analyzed in [11], which showed that unsupervised models
without any inductive bias cannot ensure disentanglement,
in other words unidentifiable. Since then, weakly/partially
supervised models have been more prevalent. Typical ap-
proaches include data augmentation [32], using auxiliary
variables [33], and imposing temporal or physical con-
straints [34], [35], [36]. All these models introduce auxiliary
information to improve identifiability.

2.2 Voice conversion

Voice conversion (VC) [10] aims to change speaker identify
of a speech signal. Conventional VC approaches require
parallel data — that is, utterances with the same content
but spoken by both the source and target speakers. Rep-
resentative models include GMMs [10], [37], [38], neural
nets [39], [40], [41], [42], [43], and NMF [44], [45]. Collect-
ing parallel data is clearly costly, so people have tried to
study approaches with non-parallel data. One research line
relies on distribution matching. The VC models based on
CycleGAN [46], [47], [48] and StartGAN [49] are examples
of this paradigm. The training criterion of these model is to
match the distributions of the converted speech and the true
speech, rather than matching pairs of frames or utterances,
thereby circumventing the need for parallel data.

Another research line is based on speech disentangle-
ment. The belief is that once speech content and speaker trait
can be well disentangled, it would be easy to achieve VC by
replacing the speaker code. Encoder-Decoder modeling is
the general architecture for this type of VC methods, where
the encoder produces codes corresponding to individual
factors, and the decoder collects these codes to produce
converted speech. Representative models include VAE [50],
CVAE [17], VQVAE [51], [52], and AdaIN-VC [53]. A key
issue with this approach is information entanglement, i.e.,
information related to different factors might be mixed in
the same code. To address this problem, a possible solution
is to use large-scale pre-trained models to extract codes
sensitive to a particular factor. For instance, using speech
recognition (ASR) models [54], [55] or self-supervised mod-
els (e.g., Wav2Vec [56], [57] or HuBERT [58]) to generate
content codes, and using pre-trained speaker embedding
models to generate speaker codes [18]. However, there is no
guarantee that the pre-trained models produce information-
purified codes. For example, it is well known that speaker
embeddings carry more information than just speaker trait-
s [59].

To achieve more disentangled codes, various regular-
ization methods have been proposed. For example, some
authors introduced an adversarial discriminator on the con-
verted speech, to enforce that the generated speech sounds
like the target speaker [60], [61], or an adversarial classifier
in the latent space, to ensure that codes corresponding to
different factors are less dependent [62], [63]. Other au-
thors designed more information-inspired regularization to
suppress MI between codes of different factors, e.g. [14],
[16]. These regularization methods generally improve VC
performance. However, the additional regressor/classifier

and minmax training leads to increased complexity, and MI
is not guaranteed to be reduced [19].

Recently, Qian et al. [18] presented a simple VC model
based on the vanilla auto-encoder (AE), called AutoVC.
In this model, speaker identity is used as condition, and
the latent code, if the dimensionality is well designed, will
represent and only represent speech content. The authors ex-
plained their model based on the IB theory [15], and showed
mathematically that if speech signals can be regarded as an
ergodic stationary order-τ Markov process with bounded
second moment, with an appropriate IB setting, speaker
and content information can be perfectly disentangled. This
theoretical guarantee makes the simple AutoVC a strong
competitor of more complex models such as CVAE [17]
and starGAN [49]. Following the same IB principle, Qian
et al. extended AutoVC to SpeechFlow [23], with more
speech factors considered, including timbre, rhythm, pitch
and content.

Although attractive in theory, the IB-based models like
AutoVC and SpeechFlow rely on careful IB design. A poorly
designed IB leads to either information entanglement or in-
formation loss. Unfortunately, IB design is often difficult and
requires much trial-and-error, in particular when the model
involves multiple factors like SpeechFlow. To address this
problem, researchers have to go back to the conventional
MI regularization methods, including adversarial loss [63],
[64] and MI loss [14]. While performance improvement
was reported, the intrinsic problems of MI regularization
discussed above remain.

The RC loss proposed in this paper aims at the same goal
of purifying information load of speech codes with IB-based
models, but tackles it from a different way: it enforces cycle
consistency that a perfect disentanglement model should
anyway satisfy, rather than explicit MI regularization.

2.3 Cycle consistency loss

Cycle consistency loss has been known as a key ingredient in
CycleGAN [65], [66], a model that has been used in VC [46].
The same loss was also employed in CycleVAE [67], [68],
where the primary loss is maximum likelihood rather than
adversarial loss. For both CycleGAN and CycleVAE, the
cycle is back and forth from one speaker to another. The
cycle in the RC loss is quite different: it is back and forth
from the code space to the observation space. Cycle loss was
also presented in AutoVC [18], where it was used to bound
the entropy of each dimension in the latent code, rather than
information purification.

The idea of RC loss also appears in general machine
learning literature. For example, [19] found that in VAE,
ensuring random cycle consistency leads to better disen-
tangled codes in image processing. However, they used
random sampling rather than RFS, that could synthesize
data off the manifold. In [69], a cycle loss is presented to
encourage class-sensitive codes producing the same classifi-
cation result when the residual code is changed. They found
with this cycle loss, the residual code becomes more class
independent. This cycle loss can be regarded as a partial
RC loss, with RFS on the residual code only. In summary,
cycle consistency loss, with or without RFS, has been used in
information disentanglement, however most existing work
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uses it as an ad-hoc regularization. In this paper, we will
present a theoretical, systematic and in-depth study on this
topic.

3 RANDOM CYCLE LOSS

3.1 IB-based information disentanglement

Our study starts from a formal definition for speech dis-
entanglement, and show how an IB-based approach can
provide a solution. Part of the analysis is inspired by [23].

Let X denote a fixed-length speech segment, and as-
sume it is generated from an underlying process involv-
ing M independent factors F = [F1, ..., FM ], formulated
by X = g(F ), where g is a one-to-one mapping whose
domain involves all the combinations of {Fi}. The infor-
mation disentanglement task is defined as follows: Design
an encoder f that represent X as a set of latent codes
Z = [Z1, Z2, ..., ZM ], so that each Zi contains and only con-
tains information of a corresponding factor Fi. Mathemati-
cally, perfect disentanglement can be formulated follows:

MI(Zi;Fi) = H(Fi) (1)
MI(Zi;F6=i) = 0 (2)

where H(·) and MI(·; ·) denote (differential) information
entropy and mutual information respectively, and

X = g(F ) (3)
Z = f(X). (4)

We show that with an auto-encoder architecture, dis-
entanglement can be achieved by setting IB capacity and
information bias for each code Zi. Firstly, Theorem 1 (proof
in Appendix A) shows that if Zi contains full information
of Fi, setting appropriate IB guarantees perfect disentangle-
ment.

Theorem 1. Assume that Zi contains full information of Fi, i.e.,

MI(Zi;Fi) = H(Fi). (5)

If the IB for each code Zi is precisely set as follows:

H(Zi) = H(Fi), (6)

then Zi are mutually independent and Zi contains information of
Fi only, i.e., MI(Zi;F 6=i) = 0.

Theorem 1 states that an IB-based approach can solve
the disentanglement problem. However, it relies on the
assumption MI(Zi;Fi) = H(Fi), which is just a partial
goal of the disentanglement task. One may think this can
be simply satisfied by feeding to the encoder of Zi with full
knowledge of Fi. However, that is not true as the encoder
may not propagate the required information to Zi. To solve
the problem, one can set explicit information bias on the
input of Zi and try to recover X from Z by a decoder h.
This is formally presented as Theorem 2 (proof in Appendix
B).

Theorem 2. Suppose that (1) for any factor Fi, only one code Zi

steadily receives full information of Fi, and (2) if any information
about Fi is lost by Zi, none of other codes or code sets can always

provide the complement. With this assumption, ||X − X̂||2 = 0
ensures MI(Fi;Zi) = H(Fi).
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Fig. 1: Illustration for IB-based information disentanglemen-
t. With the IB setting H(Zi) = H(Fi) and appropriate
information bias, an AE model that seeks for minimum
reconstruction loss ||X − X̂||2 will induce disentangled
codes.

Combining Theorem 2 and Theorem 1, we conclude
that if the IB and information bias are well settled, disen-
tanglement can be achieved with an auto-encoder. This is
the theoretical foundation for the IB-based disentanglement
approach. Fig.1 presents a graphical illustration for the
approach.

The final question is, how to design information bias to
make sure only Zi receives full information of Fi? A known
approach is via information corruption. For example, in
SpeechFlow [23], random resampling is used to corrupt
rhythm information when encoding content and pitch, to
ensure that only the rhythm encoder can receive the full
rhythm information. We note that the information bias men-
tioned above is nothing but a particular form of inductive
bias mentioned in [11], and is essential to gain identifiability.

3.2 Random cycle loss
Although theoretically sound, the IB-based disentanglement
approach requires appropriate setting for the IB and in-
formation bias, which is not easy in practice. On the one
hand, setting IB for Zi by controlling the dimensionality is
difficult. This is because we have no prior knowledge about
the suitable dimensions, therefore mostly relying on trial-
and-error. This is particularly the case when the codes are
continuous, as continuous variables hold infinite entropy
in theory. Some authors chose discrete variables [51], [52]
to alleviate this problem, but trial-and-error is still required.
On the other hand, setting information bias is not any easier.
For example, it was shown that random resampling might
be ineffective in corrupting undesired information [70]. All
these problems lead to imperfect disentanglement. To tackle
the problem, a common practice is to design explicit MI
regularization, such as adversarial loss [64] and MI loss [14].
However, as mentioned already, these MI regularizations
increase model complexity and training instability, and do
not guarantee better disentanglement.

In this paper, we present a new regularization called
random cycle (RC) loss to improve information disentan-
glement with IB-based models. The core idea is simple: we
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randomly pick up codes from different and independent
utterances, and recombine them to compose a new code.
After an additional decoding-encoding path, we hope the
resultant codes are exactly the same as those we picked up.
The RC loss is defined as the Euclidean distance between
the codes before and after the decoding-encoding process.

Before any theoretical discussion, we show how the
RC loss is implemented. The full process is shown as the
following path in Fig. 2: (1) 1st round encoding (black solid
line); (2) random factor substitution (blue dashed line); (3)
speech reconstruction (yellow dashed line); (4) 2nd round
encoding (red dashed line); (5) loss calculation.

ff

ZcZcZc

X
^
X
^
X
^

XXX

gg

X’^X’^X’^

RFS

LcycLcycLcyc

Z’^Z’^Z’^ Z’Z’Z’

LrecLrecLrec

(1)

(2)

(3)

(4)

(5)

Fig. 2: The IB-based speech disentanglement model with RC
loss. f and g are encoder and decoder respectively. Solid
lines denote the encoding and decoding for the original
utterance. Dashed lines denote the process of random sub-
stitution and cyclic decoding-encoding. Lrec and Lcyc rep-
resent the reconstruction loss and the RC loss, respectively.

We use two data samples, denoted by X1 and X2, to
demonstrate the computing process. Assume that there are
two latent codes Z1 and Z2.

• 1st round encoding: Firstly encode X1 and X2,
resulting in two sets of codes: Z1 = {Z1

1 , Z
1
2} and

Z2 = {Z2
1 , Z

2
2}.

• Random factor substitution (RFS): Randomly
choose a code fromZ2, and use it to replace the corre-
sponding code in Z1. Suppose that the selected code
is Z2

2 , we compose a new code set Z ′ = {Z1
1 , Z

2
2}.

• Speech reconstruction: Forward Z ′ to the decoder
and produce the reconstructed speech X̂ ′.

• 2nd round encoding: Encode X̂ ′ and obtain Ẑ ′ =
{Ẑ ′1, Ẑ ′2}.

• Cycle loss computation: The cycle loss is computed
as follows:

Lcyc = ||Z ′ − Ẑ ′||2. (7)

The final loss for the disentanglement model combines
the reconstruction loss and the RC loss shown in Eq.(7):

L = Lrec + α ∗ Lcyc (8)

where

Lrec = ||X − X̂||2

and α is a hyperparameter to balance the contribution of the
two losses.

3.3 Theoretical analysis

3.3.1 Analysis 1: Code independence

We show that under moderate conditions, the RC loss
theoretically leads to independent codes.

Let’s define Z ′ = {Z ′1, Z ′2} the codes after RFS. Now
reconstruct X̂ ′ from Z ′ and conduct the 2nd round encoding
to get Ẑ ′ = {Ẑ ′1, Ẑ ′2}. Our purpose is to let Ẑ ′1 be fully de-
termined by Z ′1 and Ẑ ′2 fully determined by Z ′2. This can be
obtained by minimizing the conditional entropy H(Ẑ ′1|Z ′1)
and H(Ẑ ′2|Z ′2), formulated by the following objective:

Lch = H(Ẑ ′1|Z ′1) +H(Ẑ ′2|Z ′2)

= −EZ′
1,Ẑ

′
1

log p(Ẑ ′1|Z ′1)− EZ′
2,Ẑ

′
2

log p(Ẑ ′2|Z ′2)

= −EZ′
1,Z

′
2

log p(Ẑ ′1|Z ′1)− EZ′
2,Z

′
1

log p(Ẑ ′2|Z ′2)

= −EZ′
1
EZ′

2
log p(Ẑ ′1|Z ′1)− EZ′

2
EZ′

1
log p(Ẑ ′2|Z ′2) ,

where we have employed the fact that (Ẑ ′1, Ẑ
′
2) is deter-

mined by (Z ′1, Z
′
2), and that Z ′1 and Z ′2 are independen-

t. If we further assume that the conditional probabilities
p(Ẑ ′1|Z ′1) and p(Ẑ ′2|Z ′2) are isotropic Gaussian with variation
σ, then we have:

Lch = EZ′
1
EZ′

2
||Ẑ ′1 − Z ′1||2 + EZ′

2
EZ′

1
||Ẑ ′2 − Z ′2||2 + C(σ)

∝ EZ′ ||Ẑ ′ − Z ′||2 ,

where C(σ) is a constant depending on σ. This is just the
RC loss shown in Eq.(7). Therefore, minimizing the RC loss
essentially reduces the conditional entropy of the recovered
codes.

Further notice that Z ′1 and Z ′2 are independent, and in
the case Lch = 0, Ẑ ′1 is totally dependent on Z ′1, and Ẑ ′2 is
totally dependent on Z ′2, we have:

p(Ẑ′1|Ẑ′2) =

∫
Z′

1,Z
′
2

p(Ẑ′1|Z′1, Z′2, Ẑ′2)p(Z′1, Z′2|Ẑ′2)dZ′1dZ′2

=

∫
Z′

1,Z
′
2

p(Ẑ′1|Z′1)
p(Ẑ′2|Z′1, Z′2)p(Z′1)p(Z′2)

p(Ẑ′2)
dZ′1dZ

′
2

=

∫
Z′

1

p(Ẑ′1, Z
′
1)dZ

′
1

∫
Z′

2

p(Ẑ′2|Z′2)p(Z′2)
p(Ẑ′2)

dZ′2

= p(Ẑ′1) .

This result means that if the model has been well trained
and the RC loss converges to zero, then the codes Ẑ1

′
and

Ẑ2
′

are mutually independent. We highlight that this result
is general and applies to any encoder-decoder process.
Specifically, it does not rely on any IB setting.
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3.3.2 Analysis 2: Compatibility with IB approach

The RC loss is fully compatible with the IB-based disentan-
glement model, in the sense that pursuing a low RC loss
does not prevent the disentanglement model from pursuing
its global optimum.

Let’s assume the disentanglement model is perfectly
trained with IB setting H(Zi) = H(Fi). Since MI(Zi;Fi) =
H(Fi) (Eq.(1)), one immediately obtains H(Fi|Zi) = 0 and
H(Zi|Fi) = 0. This means that the mapping g ◦ f be-
tween F and Z is one-to-one. Therefore, for any composed
code Z ′ = {Z ′i} by RFS, we can always identify a factor
F ′ = {F ′i} where each F ′i corresponds to Z ′i. Note that
any combination of F ′i is in the domain of the generation
function g, F ′ corresponds to a valid sample X ′ = g(F ′).
Since the disentanglement model is perfect, X ′ is exactly
encoded as Z ′ and can be fully reconstructed by the decoder
h, i.e., X̂ ′ = h(Z ′) = X ′. Encoding the reconstructed data
X̂ ′ leads to: Ẑ ′ = f(X̂ ′) = f(X ′) = Z ′. Therefore, the RC
loss ||Ẑ ′ − Z ′||2 = 0.

This result means that if one can train a perfect IB-
based disentanglement model, the RC loss will naturally
approach to 0. In other words, the RC loss does not posit
anything conflicting to the goal of the disentanglement
model; instead, it just reinforces a necessary condition that
a perfect disentanglement model should satisfy.

3.3.3 Analysis 3: Code-space data augmentation

The entire path of the RC loss h ◦ f can be regarded as a
code-space auto-encoder, where the encoder and decoder
are swapped compared to the original model. With the new
view, RFS plays a role of code-space data augmentation,
by synthesizing new data with random recombination. As
discussed in the previous analysis, if the disentanglement
model is perfect, the new generated code C ′ corresponds
to a unique factor F ′, which is a particular combination of
F ′i . According to our assumption, any combination of F ′i
is involved in the domain of the generation process g, ad
so corresponds to a valid data X ′. The RC loss encourages
that the new data X ′ can be well represented by the model,
i.e., X ′ can be well reconstructed.1 In other words, the
model takes X ′ as an extra training data. We conjecture
this code-space data augmentation is particularly useful
when the training set is small and contains limited cases
of factor combination. Overall, the RC loss may improve
model generalizability.

We highlight that the ‘factor substitution’ rather than
‘factor resampling’ is important for the RC loss. If the factors
are randomly sampled or corrupted, e.g., by Gaussian, there
is no guarantee that the synthesized code is valid, and in this
situation enforcing RC loss could be less beneficial.2 We also
conjecture that the code-space data augmentation especially
benefits to the voice conversion task, since it involves the
same factor substitution operation as RFS during inference.

1. To make this clear, notice that H(Z) = H(X), so the RFS code
C′ and the recovered code Ĉ′ are deterministically mapped to X′ and
X̂′ in the observation space respectively. Therefore, minimizing the RC
loss is equal to recovering X′ by X̂′.

2. It may contribute to bound the entropy of each code dimension, as
the identity loss in AutoVC. [18].

3.3.4 Analysis 4: Limit of RC loss
We notice that the RC loss by itself only ensures code inde-
pendence (as shown in Analysis 1), but does not guarantee
factor disentanglement. Essentially, this is because it is a
symmetric loss and does not introduce any inductive bias.
Therefore, it must co-operate with the IB approach, i.e.,
with reasonable settings for IB capacity and information
bias, otherwise degenerated solutions may be obtained. For
example, one can reduce the RC loss by setting a particu-
lar code to be constant. In this case, the constant code is
indeed independent from others, but no disentanglement is
obtained. Another example is the phenomenon of condition
collapse. For example with CAE, the decoder may simply
ignore the condition code. In this situation, the RC loss
computed on the latent code is low but the information
is fully entangled. We will show examples of degenerate
situations in the simulation experiments; however on real
speech data, we have not observed the problem.

3.3.5 Discussion
In essence, the RC loss encourages data synthesized by any
factor combination being decomposable into the compos-
ite factors. This follows from an analysis-and-resynthesis
principle of reductionism [20], [21], [22]. This principle
has been widely adopted in many scientific fields, such as
perception [71] and chemistry [72]. The primary belief is that
once a phenomenon can be well explained by independent
factors, recombining the factors can lead to a new and
valid phenomenon, where the term ‘valid’ means that the
new phenomenon can be explained in the same way as
the existing observations. For example, once scientists know
different materials are composed of atoms, it would be pos-
sible to construct new materials by combining atoms in new
ways, and the new materials should can be decomposed
into atoms following the same decomposition rule.

The reductionism origin leads to profound difference be-
tween RC loss and MI regularization such as adversarial loss
and MI loss. Although RC loss does enforce independent
codes hence MI reduction, MI reduction is not the way that
RC loss takes to boost disentanglement. The true mechanism
is the analysis-and-resynthesis principle and MI reduction
is simply a consequence of the principle. Interestingly, we
found in our experiments that RC loss is more effective in
MI reduction than adversarial loss and MI loss, although it
is not intentionally designed for that purpose.

4 SIMULATION STUDY

In this section, we present a simulation study to investigate
behavior of the RC loss. We generate some ‘speech like’ one-
dimensional sequences, for which the mean value represents
‘speaker identify’ and a Markov random process is designed
to represent ‘speech content’. By the simulated data, we
explore how information is disentangled by IB-based con-
ditional auto-encoders (CAEs), and understand how the MI
regularization methods and the RC loss take effect.

4.1 Data generation
We generate each sample as follows, where T is the length
of the sample:
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xc(t) = e(c) + z(t) + ε(t) t = 0, ..., T − 1 (9)

where c denotes class, and e(c) denotes the center of class c,
which we regard as the class factor; t denotes time, and z(t)
is the content factor which we assume follows an ergodic
Markov chain. ε(t) ∼ N(0, σ) is an additive Gaussian
noise. All the quantities are scalars, and the resulting vector
[xc(0), xc(1), ..., xc(T − 1)] is regarded as a data sample.
Note that the Markov assumption for z(t) has been made
in the theoretical analysis in AutoVC [18]. The detailed
procedure is as follows:

• Define 10 classes whose centers {e(c)}10c=1 are evenly
scattered on the real axis from 0 to 18.

• Define z(t) as a Markov chain with 3 states whose
values are 0.0, 0.5, 1.0 respectively. The chain always
begins from state 1, and for each state, it must stay
in that state for 3 steps; after that, it is possible to
stay in the same state or transit to the next state,
with probability 0.1 and 0.9 respectively. Allowed
transitions from states 1, 2 and 3 are states 2, 3 and 1
respectively.

• To generate a data sample, we first randomly select
a class c following a uniform distribution, and then
run the Markov chain for T = 50 steps. At each step,
record z(t) and sample ε(t) from N(0, 0.1). Finally,
xc(t) is obtained by Eq.(9).

We generate 400 samples for each class, 200 for training
and 200 for test. This amounts to a training set and a test
set, each with 2000 samples. Mean-variance normalization
is employed. Fig. 3 shows several data samples, each curve
corresponding to a sample of a particular class.

Fig. 3: Data samples generated by Eq.(9). Each curve repre-
sents a sample, and we choose one sample for each of the 10
classes.

4.2 CAE model
The model used in our experiments is a CAE. The dimen-
sionality of the data space is 50, and the dimensionality of
the latent space varies according to the test. The encoder
and decoder are both three-layer fully-connected neural

nets whose hidden layer consists of 64 units with the tanh
activation function. The output of the encoder involves a
tanh nonlinear transform, though the output of the decoder
is linear. Unless explicitly stated, the model is trained for
20k iterations with batch size of 512, using the Adam
optimizer [73] with a learning rate 1e−4.

We use the class label c as the conditional input of the
decoder. More precisely, we learn an embedding matrix
that maps e(c) to a 20-dim class code, which is then con-
catenated with the output of the encoder and forwarded
to the decoder. According to the theory of the IB-based
approach developed in Section 3, the output of the encoder
will mostly represent the content factor z(t) if its capacity is
well controlled. We therefore call the encoder output content
code.

4.3 MI reduction
The first experiment examines how the RC loss purifies
information in the content code, i.e., reduces MI between
the content code and the class label. Since the content code
is continuous, MI can not be computed directly. To solve the
problem, we firstly cluster the content codes into 10 classes
by k-means, and then apply the normalized mutual info score
function in the sklearn python package to compute MI
between the cluster assignment and the class label.

Table 1 shows the results on both the training and test
sets. Note that the k-means clustering is conducted with the
training set, and the resultant clusters are used to compute
the MI values on both the training and the test sets. It
can be observed that the standard CAE can perform good
reconstruction, and if the dimensionality of the content
code is small, the MI can be reduced, indicating that the
content code contains less class information. This conforms
to the analysis in AutoVC [18] and our results in Section 3.
However, this MI reduction happens only if the IB is tight,
i.e., code dim = 1.

With the RC loss, the MI is significantly reduced if the
IB is not over loose, while the reconstruction loss is not
much sacrificed. This supports our theoretical analysis that
RC loss is compatible with IB-based models and enforces
independent codes. Note that if the IB is loose (code dim
≥ 25), the MI cannot be reduced even with the RC loss.
This is consistent with our analysis about the limit of RC
loss: it should be accompanied with a reasonable IB setting,
otherwise degenerated solutions might be obtained. In this
experiment specifically, if the dimensionality is over large,
the CAE can achieve good reconstruction from the content
code, hence ignoring the class code. In this case, imposing
RC loss may worsen this ‘condition collapse’ problem, as
ignoring the class code just reduces the RC loss.

4.4 Comparison with adversarial loss and MI loss
We now compare RC loss with two explicit MI regulariza-
tion losses: adversarial loss and MI loss. For the adversarial
loss, we design an extra classifier that accepts the content
code and predicts the class label. The classifier is a three-
layer neural net whose dimensionality of the hidden layer
is half of that of the content code. A gradient reverse layer
is inserted between the content code and the classifier to
perform adversarial training, as in [62], [63], [64]. For the MI
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TABLE 1: Reconstruction loss (Rec) and MI tested on CAE
with/without RC loss. ‘Code dim’ represents the dimen-
sionality of the content code. Note that 1.0 is the maximum
value of MI computed by the normalized mutual info score
function.

CAE CAE + RC
Code dim Rec MI Rec MI

Train

1 3.1e−5 0.128 3.1e−5 0.117
2 3.0e−5 0.738 3.1e−5 0.016
4 2.1e−5 1.000 2.7e−5 0.178
8 1.4e−5 0.973 2.0e−5 0.104
25 8.7e−6 1.000 1.3e−5 1.000

Test

1 3.1e−5 0.133 3.0e−5 0.126
2 3.0e−5 0.742 3.0e−5 0.025
4 2.1e−5 1.000 2.7e−5 0.163
8 1.4e−5 0.975 1.9e−5 0.102
25 8.9e−6 1.000 1.4e−5 1.000

loss, we choose CLUB, an upper bound of MI as proposed
in [74] and used in [14], [16].

The dimensionality of the content code is set to 8, and
we train the model for 20k iterations. Fig. 4 (Top) presents
the MI values during the training process, when different
regularizations are employed. It can be seen that with the
RC loss, the MI is quickly reduced to a low level, while with
the adversarial loss and the MI loss, the MI value does not
show a clear trend. This is a bit surprising, as the two losses
were intentionally designed to reduce the MI. We attribute
the phenomenon to the instability of the minmax game that
the training process plays with the two losses.

In another experiment, we reduce the dimensionality
of the content code to 2. The results are shown in Fig. 4
(Bottom). In this experiment, all the losses seem to con-
tribute, especially with a heavily weighted MI loss (MI-10).
The more substantial contributions of the adversarial loss
and the MI loss in the dim-2 case compared to the dim-
8 case may be attributed to the ease in model training.
Nevertheless, the RC loss is more effective and stable than
the two explicit regularization losses.

4.5 Conversion examples

In this experiment, we choose two samples, one denoted by
S and the other denoted by C . Using the CAE, we extract
the content code from C and combine it with the class code
of S, and then perform generation with the decoder. This
simulates voice conversion.

Fig. 5 presents an example of the conversion. In this
picture, the blue and orange curves represent the original
sample S and C respectively. The content code of C is then
combined with the class code of S to perform conversion,
and the result S+C is shown as the green dot-dashed curve.
We hope the converted sample matches S in mean value,
while matches C in dynamic change. To show the match
in dynamic change easily, we perform a mean-shift on the
converted sample, resulting in S+C+∆ that is shown as the
red dotted curve.

It can be seen that the conversion with the standard
CAE largely fails, while with any of the regularizations,
the conversion is better: at least the mean values of the
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Fig. 4: MI between the content code and the class label, when
trained with RC loss (RC), adversarial loss (AD) and MI loss
(MI) as regularization. In the legend, the number appended
to the name represents the weight on the regularization. The
dimensionality of the latent code is 8 (Top) and 2 (Bottom)
respectively.

converted samples match that of S, hence the class being
successfully converted. Comparing the results with the three
regularizations, it can be seen that with the RC loss, the
converted sample with mean-shift (S+C+∆) matches the
content sample (C) best, suggesting that it preserves the
content better than the adversarial loss and the MI loss.
Moreover, we also found that quality of the conversion is
more stable with the RC loss than with the two MI regu-
larization losses, if we inspect the conversion results with
models of different epoches. Videos of evidence are shown
in the project web page and included in the supplemental
as well.

5 EXPERIMENTS ON VC: CYCLEVC
In this experiment, we apply the RC loss to AutoVC [18],
a simple VC model based on CAE. The main purpose of
this experiment is to study the behavior of the RC loss
on real speech data, rather than a full and complicated
VC system. Therefore, we choose a medium sized training
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Fig. 5: An example of conversion with the conventional CAE and CAEs with adversarial loss (CAE+AD), MI loss (CAE+MI)
and RC loss (CAE+RC). The weight for the AD/MI/RC loss is chosen to be 1, though other values show similar results.
In each figure, the blue solid line shows the sample to provide class code (S); the orange dashed line shows the sample to
provide content code (C); the green dot-dashed line shows the converted sample with class code from S and content code
from C , denoted by S+C ; the red dotted line is the mean-shift version of S+C , denoted by S+C+∆. If the conversion is
perfect, S+C will match S in mean value and C in dynamic change, so the curves of S+C+∆ and C should overlap.

set which allows us performing comprehensive parameter
search. Moreover, we fully rely on objective metrics in
system evaluation and comparison. Large-scale training and
complete evaluation (both objective & subjective) will be
taken in the next experiment with SpeechFlow, a successive
version of AutoVC that offers more fine-grained control of
disentanglement and conversion.

5.1 AutoVC and CycleVC

We firstly present the AutoVC model, and then describe
how to apply the RC loss to the model. To assist the
presentation, AutoVC regulated by RC loss will be called
CycleVC.

Briefly, AutoVC is a CAE, where speaker vectors generat-
ed from a pre-trained speaker embedding model are used as
the condition, and the latent code represents speech content.

To avoid any confusion, we will use speaker code and content
code to denote the speaker embedding and the latent code of
the CAE respectively.

The main diagram is shown in Fig. 6. In the training
phase (Fig. 6, left panel), a fixed-length speech segment X
is fed to the speaker encoder Es and produces speaker code
Zs. X and Zs are then concatenated and fed to content
encoder Ec, to produce content code Zc. Zc and Zs are
then concatenated and fed to the decoder D, to produce the
reconstructed speech segment X̂ . The training criterion is
reconstruction loss, i.e., ||X − X̂||2. In the conversion phase
(Fig. 6, right panel), the pipeline is almost the same as in
the training phase, except that the speaker code fed to the
decoder is produced from a reference speech segment Xr.

Fig. 7 shows the diagram of CycleVC, AutoVC regular-
ized with the RC loss. Since the conversion phase is the same
as AutoVC, only the training phase is shown. Moreover,
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Fig. 6: AutoVC diagram in (Top) training phase and (Bot-
tom) conversion phase.

we omit the path for the reconstruction loss as it is the
same as AutoVC. In this diagram, two segments X and Xr

are randomly selected to generate the content code Zc and
the speaker code Zr

s respectively, and Zc and Zr
s are fed

to the decoder, producing the reconstructed speech X̂ . The
reconstructed speech is then fed toEc andEs to produce the
2nd round codes Ẑs and Ẑc. The RC loss is then computed
as ||Ẑc − Zc||2. Note that a full RC loss should involve
||Ẑs − Zr

s ||, though we assume the speaker encoder is fixed
so just omit it.
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Fig. 7: CycleVC diagram for model training. Only path for
the RC loss is shown.

5.2 Configurations

The CSTR VCTK corpus [75] is used to conduct the experi-
ment. We choose 780 utterances from 20 speakers for model
training, and 850 utterances from another 20 speakers are
used for testing. There is no overlap between the training
and test data, in both speaker and content.

Both the AutoVC and CycleVC systems are constructed
using the source code published online3. The settings in the

3. https://github.com/auspicious3000/autovc

original repository are largely retained, including network
structure, data processing steps, and the training scheme.

A pre-trained d-vector model [76] is used as the s-
peaker encoder, which produces 256-dim speaker codes.
The AutoVC/CycleVC models output 80-dimensional Mel
spectrum, and a pre-trained HiFiGAN [77] is used to convert
Mel spectrum to speech signals. The Adam optimizer [73] is
used to train the model, with a batch size of 20 for 100k
steps.4

We also implement the adversarial loss [62], [63] with
the same source code and configuration. The extra classifier
used for computing the adversarial loss is composed of 2
hidden layers, consisting of 256 and 128 units respectively.
The input is the content code, and the output corresponds
to the 20 speakers in the training data. A gradient reversal
layer between the content code and the classifier is used
to enable adversarial training. The model regulated by the
adversarial loss is denoted by ADVC.

5.3 Evaluation metrics
Four objective metrics are used to evaluate the generated
speech:

• MOS: The output of MOSNet [78] that approximates
the mean opinion score (MOS) in subjective tests.
This is used to evaluate the overall perceptual quali-
ty;

• MCD: Mel-cepstral distortion (MCD), to evaluate
similarity on spectrum;

• F0-PCC: Pearson correlation coefficient (PCC) on F0
values, to evaluate similarity on pitch;

• Spk-Sim: Cosine similarity on speaker codes, to e-
valuate similarity on speaker trait.

5.4 Results for reconstruction
We firstly report the results on speech reconstruction. Be-
sides the four metrics defined in the previous section, we
also test MI between the content code and the speaker code,
in order to evaluate how well the information is disentan-
gled. The result is reported in the row MI(C ; S). For both
CycleVC and ADVC, the weight on the regularization term
impacts system performance. We report the results with the
setting for each system that leads to the lowest MI on the
test set.

TABLE 2: Comparison among AutoVC, CycleVC and ADVC
on reconstructed speech.

32 dim 128 dim
Metric AutoVC CycleVC ADVC AutoVC CycleVC ADVC
MOS (↑) 2.986 2.998 2.999 3.027 3.067 3.060
MCD (dB) (↓) 2.912 2.851 2.896 2.963 2.921 2.911
F0-PCC (↑) 0.298 0.275 0.284 0.346 0.370 0.378
Spk-Sim (↑) 0.712 0.718 0.712 0.740 0.754 0.753
MI(C; S)(↓) 0.158 0.145 0.155 0.249 0.176 0.195

The results are reported in Table 2, where the dimension
of the content code is set to 32 and 128 respectively. Note
that 32-dim is the default setting of AutoVC, representing

4. In the original repository, the batch size was set to 2. To meet the
request of the RFS operation in CycleFlow, we increased the batch size
to 20. Our experiment showed that the increased batch size also benefits
AutoVC.
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a reasonable (tight and sufficient) IB setting. The results
show that both CycleVC and ADVC can reduce MI between
the content and speaker codes, though CycleVC is more
effective. Moreover, almost on all the quality metrics, Cy-
cleVC and ADVC provide better performance than AutoVC,
especially with the 128-dim setting where the IB is loose.
This performance improvement should be attributed to the
increased generalizability associated with the additional
regualrization offered by the RC loss and adversarial loss.
The relative advantage of CycleVC and ADVC is not clear
in this experiment.

5.5 Results for conversion
The performance on the conversion task is shown in Table 3.
Note that for F0-PCC and Spk-Sim, the pair for comparison
is specified. There are several observations: (1) Comparing
the AutoVC results of 32-dim and 128-dim, a noticeable
change is that the 128-dim model leads to a larger F0-
PCC between the source speech and the converted speech,
reflecting the fact that more information of the source speech
is retained. This redundant information leads to a worse
MOS value, suggesting that the IB is loose. (2) CycleVC does
not offer clear improvement in the 32-dim test, however in
the 128-dim test, consistent performance improvement is
observed. This is expected as the IB is tight in the 32-dim
model, for which AutoVC can achieve a clean content code;
in the 128-dim condition, the content code is more informa-
tion entangled, so the RC loss provides more contribution.
(3) In both the 32-dim and 128-dim cases, ADVC does
not provide better performance than the AutoVC baseline.
Considering that ADVC indeed reduces the MI value as
shown in Table 2, it seems to suggest that a lower MI
does not necessarily imply a better conversion. The clear
improvement with the RC loss, therefore, should not be su-
perficially explained by the MI reduction, but the improved
analysis-and-resynthesis consistency, and perhaps the code-
space data augmentation together.

TABLE 3: Comparison among AutoVC, CycleVC and ADVC
on converted speech. ‘CP’ denotes to whom the converted
speech will compare when computing the ‘Metric’. ‘S’ de-
notes source speech, ‘T’ denotes target speech.

32 dim 128 dim
Metric CP AutoVC CycleVC ADVC AutoVC CycleVC ADVC
MOS(↑) - 3.053 2.977 3.031 3.045 3.079 3.042
F0-PCC(↑) S 0.272 0.279 0.241 0.309 0.331 0.306
Spk-Sim(↑) T 0.674 0.675 0.667 0.687 0.700 0.693

6 EXPERIMENTS ON VC: CYCLEFLOW

In this experiment, we apply the RC loss to SpeechFlow [23],
a more fine-grained VC model that decomposes speech
signals to timbre, rhythm, content and pitch.

6.1 SpeechFlow and CycleFlow
SpeechFlow represents an input speech segment X with
four codes: timbre Zt, rhythm Zr, content Zc and pitch Zf .
To make sure different codes represent the corresponding
factors, IB and the information bias are carefully designed.
Specifically, a pre-trained d-vector model is used to produce

Zt, and a pitch extractor is used to produce input for Zf .
A random resampling (RR) operation is employed to corrupt
rhythm information in both Zc and Zf . By these designs,
information bias is established and once the model is well
trained, different factors are represented by different codes.
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Fig. 8: The architecture of CycleFlow. Solid lines denote the
path for reconstruction loss, and dashed lines denote the
path for RC loss. Note that the pitch code Z1
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f in the picture.

We apply the RC loss to improve SpeechFlow, and call
the resultant model CycleFlow. The architecture is shown
in Fig. 8. The main path of the RC loss is similar to that in
CycleVC, and can be computed by an additional decoding-
encoding path, as shown by the dashed lines in Fig. 8.

6.2 Data and configurations

We mostly follow the experimental settings in Speech-
Flow [23]. Specifically, 27, 500 utterances of 100 speakers
from VCTK are used for model training, and 1060 utterances
of another 8 speakers from the same corpus are used to
perform testing. No overlap exists between the training and
test data, in both speaker and content.

SpeechFlow is reproduced using the source code pub-
lished online5, and the same code is adapted to implement
CycleFlow. We mostly reuse the parameters of the origi-
nal repository, including network structure, data process-
ing steps, and the training scheme. Specifically, we use d-
vector [76] to represent speaker timbre, SPTK6 to extract
F0 as the pitch value. The output of the model is 80-
dimensional Mel spectrum, and a pre-trained WaveNet [79]
is used to generate speech signal from Mel spectrum. The
model is trained using the Adam optimizer [73] with a batch
size of 16 for 200k steps. For comparison, we also implement
an ADFlow model, another SpeechFlow variant regularized
with adversarial loss as in [64]. We have tried our best to
tune the weight of the adversarial loss, in order to get the
best performance.

5. https://github.com/auspicious3000/SpeechSplit
6. http://sp-tk.sourceforge.net/
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6.3 Quality of reconstruction
We firstly test the quality of reconstructed speech produced
by different models. The results are shown in Table 4.
It can be seen that CycleFlow substantially outperforms
SpeechFlow. In comparison, ADFlow also performs better
than SpeechFlow, but the improvement is marginal and
much less significant compared to the one obtained by
CycleFlow. As discussed in the AutoVC experiment, this
result demonstrates that both the RC loss and adversarial
loss can improve model generalizability, though RC loss is
more effective.

TABLE 4: Quality comparison among SpeechFlow, Cycle-
Flow and ADFlow on reconstructed speech.

Metric SpeechFlow CycleFlow ADFlow
MOS (↑) 2.919 3.124 2.962
MCD (dB) (↓) 3.233 3.121 3.136
F0-PCC (↑) 0.647 0.670 0.650
Spk-Sim (↑) 0.849 0.900 0.849

6.4 Mutual information
In the second experiment, we investigate mutual informa-
tion (1) between the original speech and the codes, and (2)
between different codes. Ideally, we hope all these MI values
as small as possible.

The results are shown in Table 5. It can be observed
that in all the comparisons, CycleFlow achieves lower MIs
than SpeechFlow. For row 1, 2 and 3, this means that all
the encoders eliminate more irrelevant information from the
original speech. For row 4, 5 and 6, this means that the
codes are more mutually independent. Since CycleFlow can
achieve comparable or even better reconstruction compared
to SpeechFlow, the reduced MI should be attributed to
better disentanglement (rather than information loss) with
regularization of the RC loss. Finally, ADFlow does not
show clear MI reduction, although that is the purpose of the
adversarial loss. Considering the results of ADVC where MI
is indeed reduced, we conjecture the failure of ADFlow is
due to the more factors the model involves, which makes
the minmax training even harder.

TABLE 5: MI between input speech and codes, and between
pairs of codes. S denotes the original speech signal. Zc, Zr ,
Zf denote codes for content, rhythm and pitch respectively.

No. Factors SpeechFlow CycleFlow ADFlow

1 S vs. Zc 0.509 0.366 0.525
2 S vs. Zr 0.713 0.616 0.704
3 S vs. Zf 0.552 0.431 0.498
4 Zc vs. Zr 0.516 0.340 0.516
5 Zc vs. Zf 0.446 0.298 0.438
6 Zr vs. Zf 0.529 0.495 0.511

6.5 Voice conversion
In the third experiment, we conduct voice conversion us-
ing SpeechFlow, CycleFlow and ADFlow. Three tests are
conducted: (1) Timbre conversion (timbre only); (2) Style
conversion (pitch + rhythm); (3) Full conversion (timbre +
pitch + rhythm). We do not intend to test pitch and rhythm
separately, as it is not easy for human listeners to identify
them individually.

6.5.1 Objective result

The objective results are reported in Table 6. It can be
observed that in almost all the conversion tasks and on
almost all the metrics, CycleFlow outperforms SpeechFlow,
demonstrating the clear contribution of the RC loss. In
particular, CycleFlow seems more superior in pitch trans-
ferring: F0-PCC in style conversion changes from 0.29 to
0.46. This observation conforms to the results in Table 5,
where the MI between the content code and the original
speech is significantly reduced with CycleFlow (0.5093 →
0.3659), and the MI between the content and pitch codes
is reduced as well (0.4455 → 0.2983). This means that
with the RC loss, the content code is significantly purified
and involves much less pitch information, which making
the pitch conversion easier. In comparison, ADFlow can
generally improve MOS and F0-PCC, which coincides with
the result in [64]. However, in terms of Spk-Sim, ADFlow
does not offer any improvement. Comparing CycleFlow and
ADFlow, CycleFlow works clearly better. The only metric
on which ADFlow wins is the MOS value when converting
speaking style, but this is probably due to the weak style
conversion and weak timbre preservation.

TABLE 6: Comparison among SpeechFlow, CycleFlow and
ADFlow on converted speech. ‘CP’ denotes to whom the
converted speech will compare when computing the ‘Met-
ric’ in the ‘Conv’ task.

Metric Conv CP SpeechFlow CycleFlow ADFlow
MOS(↑) Timbre - 2.959 3.214 2.994

Style - 2.944 2.987 3.098
Full - 2.924 3.089 3.056

F0-PCC(↑) Timbre S 0.441 0.493 0.471
Style T 0.286 0.464 0.349
Full T 0.348 0.552 0.375

Spk-Sim(↑) Timbre T 0.638 0.781 0.622
Style S 0.793 0.778 0.739
Full T 0.702 0.805 0.647

6.5.2 Subjective results

In the subjective test, we hired 26 Chinese listeners, each
being assigned 150 test cases, divided into 5 test groups:
(1) reconstruction quality; (2) style conversion; (3) timbre
maintenance in style conversion; (4) full conversion with
both style and timbre transfer; (5) quality of converted
speech. For each evaluation, we presented listeners three ut-
terances produced by SpeechFlow, CycleFlow and ADFlow
respectively, and asked them to select which one is the best
according to the specified metric. We used speech segments
of 8 speakers in the test set (5 males and 3 females).

To guide the listeners how to proceed the tasks, an
example was provided for each task. The utterance with the
desired property was presented to the listener in each test
case, to let them know what the conversion targets to. For
example, in the (2) style conversion task, the target speech
was presented to inform the target style; and in the (3)
timbre maintenance task, the source speech was presented
to inform the timbre that we wanted to maintain. Note that
in all the tests, the content of the source and target speech
are the same, in order to reduce the psychological load of
the listeners and therefore a more accurate evaluation.
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Fig. 9: Results of subjective evaluation on 5 listening tasks.

The results are shown in Fig. 9. It can be found that
the three models obtained comparable results in the re-
construction task, and in all the four conversion tasks,
CycleFlow clearly outperforms SpeechFlow and ADFlow.
Note that ADFlow did not show much improvement over
the SpeechFlow baseline. This is consistent with the results
in the objective evaluation, and aligns with the argument in
literature that adversarial loss does not necessarily improve
disentanglement [19].

7 CONCLUSION

We proposed a novel random cycle (RC) loss to improve
information disentanglement with the IB-based models. The
core design is a combination of random factor substitution
and cycle consistency loss. We demonstrated theoretically
that the proposed RC loss is fully compatible with the IB-
based disentanglement approach and leads to independent
codes. In most cases (no degeneration happens), this strong-
ly encourages better disentanglement. We tested the RC loss
with simulation data and found that it is highly effective. We
also applied the new loss to two popular voice conversion
models, AutoVC and SpeechFlow, and observed significant
performance improvement in reconstruction, disentangle-
ment and conversion. Importantly, we found in nearly all
the situations, RC loss outperforms adversarial loss and MI
loss, two representatives of the MI regularization method
that is widely used to promote disentanglement. It should
be highlighted that the implementation of RC loss is simple
and the additional computational cost is nearly negligible.
Therefore, we believe the RC loss deserves more investiga-
tion and being employed in broader applications.

Vast amount of research work remains to be undertaken
on this topic. To mention a few: how to avoid degenerate sit-
uations, how to combine and reconcile RC loss and other MI
regularizations, how to prevent the negative impact on the
reconstruction loss in model training, how the RC loss work-
s in other applications. Finally, the foundation of the RC
loss, i.e., the analysis-and-resynthesis principle, is a general
belief of science. This principle deserves more investigation
in machine learning, if the purpose is to explain physical
data. From that perspective, the RC loss is just a small step,

and other forms of models and methods that respect this
principle could make more profound contribution.

APPENDIX A
PROOF TO THEOREM 1

Proof. From Eq.(6) and Eq.(5), we have:

MI(Zi;Fi) = H(Zi)−H(Zi|Fi) (10)
= H(Fi)−H(Fi|Zi) (11)
= H(Fi) (12)
= H(Zi). (13)

Therefore

H(Zi|Fi) = 0 ; H(Fi|Zi) = 0 (14)

This equation shows that Zi is fully determined by Fi

and vice versa. Since Fi are mutually independent, an im-
mediate conclusion is that Zi are mutually independent.

For any factor that is different from Fi, denoted by F6=i,
we have:

MI(Zi;Fi, F6=i) = MI(Zi;Fi) +MI(Zi;F 6=i|Fi) (15)

Note that:

H(Zi) ≥MI(Zi;Fi, F6=i) ≥MI(Zi;Fi) = H(Zi) (16)

This means:

MI(Zi;Fi, F6=i) = H(Zi). (17)

Take Eq.(13) and Eq.(17) to Eq.(15):

MI(Zi;F6=i|Fi) = 0 (18)

Now compute MI(Zi;F 6=i|Fi) as follows:

MI(Zi;F6=i|Fi) = EZ,Fi,F6=i
ln

p(Zi, F6=i|Fi)

p(Zi|Fi)p(F6=i|Fi)
(19)

Apply the fact that Fi and F 6=i are independent, and that
Fi and Zi determine each other:

MI(Zi;F 6=i|Fi) = EZ,Fi,F 6=i
ln

p(Zi, F6=i, Fi)

p(Zi, Fi)p(F6=i)
(20)

= EZ,Fi,F6=i
ln

p(Zi, F6=i)

p(Zi)p(F6=i)
(21)

= MI(Zi;F 6=i) (22)

Referring to Eq.(18), we therefore have:

MI(Zi;F 6=i) = 0. (23)

This means Zi contains no information of F6=i. In other
words, it contains and only contains information of Fi.
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APPENDIX B
PROOF TO THEOREM 2
Proof. Recall the assumption: one and only one code Zi

steadily receives full information of Fi; and if any informa-
tion about Fi is lost by Zi, none of other codes or code sets
can always provide the complement. In other words, other
codes or code sets may provide the complement in some
instances, but cannot provide the complement all the time.
Formally this can be stated as follows: if H(Fi|Zi) > 0, then
H(Fi|Zi, Z6=i) > 0.

Now we can prove H(Fi|Zi) = 0 by contraction.
If this is not the case, i.e., H(Fi|Zi) > 0, according to the

assumption, we have H(Fi|Zi, Z6=i) > 0. Therefore:

H(Fi|Ŝ) ≥ H(Fi|Zi, Z6=i) > 0 (24)

where Ŝ is the reconstructed signal. Note that the original
signal S fully determines Fi, i.e.,

H(Fi|S) = 0. (25)

Eq.(24) and Eq.(25) indicate that S 6= Ŝ, so the the recon-
struction is not perfect, which is contrast to the condition
that the solution is optimal.

Therefore, H(Fi|Zi) = 0 must be held, which implies
MI(Fi;Zi) = H(Fi).
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